Composite Materials: Analysis and Design

Homework no. 1

Problem 1

Prove the following relations:

$$
\begin{aligned}
& \text { I. } \vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A} \\
& \text { II. } \quad(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=\left|\begin{array}{ll}
\vec{A} \cdot \vec{C} & \vec{A} \cdot \vec{D} \\
\vec{B} \cdot \vec{C} & \vec{B} \cdot \vec{D}
\end{array}\right| \\
& \text { III. } \quad(\vec{A} \times \vec{B}) \cdot(\vec{B} \times \vec{C}) \times(\vec{C} \times \vec{A})=[\vec{A} \cdot(\vec{B} \times \vec{C})]^{2} \\
& \text { IV. }(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=[\vec{A} \cdot(\vec{C} \times \vec{D})] B-[\vec{B} \cdot(\vec{C} \times \vec{D}) A]
\end{aligned}
$$

Problem 2

An anisotropic elastic solid is subjected to some load that gives a strain state $\varepsilon_{\mathrm{ij}}$ in the $\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3}$ coordinate system. In a different (rotated) coordinate system $\mathrm{x}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{x}_{3}$ the strain state is transformed to $\varepsilon_{m^{\prime} n^{\prime}}$.
(a) Do you expect the strain energy density function U_{0} to be a function of strain invariants only?
(b) Do you expect the same or different expressions of U_{0} when it is expressed in terms of $\varepsilon_{i j}$ or $\varepsilon_{m^{\prime} n^{\prime}}$?
(c) Do you expect the same or different numerical values of U_{0} when you compute it from its expression in terms of $\varepsilon_{i j}$ and from its expression in terms of $\varepsilon_{m^{\prime} n^{\prime}}$?
(d) Justify your answers.

Answer parts (a), (b) and (c) if the material is isotropic.

Problem 3

Show the reduction of orthotropic material stress-strain Equation to those of a transversely isotropic material stress-strain Equation.

Problem 4

(a) A thin triangular plate is fixed along the boundary OA and is subjected to a uniformly distributed horizontal load p_{0} per unit area along the boundary AB as shown in the figure. Give all boundary conditions in terms of displacement or stress components in $\mathrm{x}_{1} \mathrm{X}_{2}$ coordinate system.
(b) If p_{0} acts normal to the boundary AB what will be the stress boundary conditions along line AB ?

