Composite Materials: Analysis and Design

Homework no.1

Problem 1

Prove the following relations:

 $I. \quad \overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{A}) = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{A}) - \nabla^{2} \overrightarrow{A}$ $II. \quad (\overrightarrow{A} \times \overrightarrow{B}) \cdot (\overrightarrow{C} \times \overrightarrow{D}) = \begin{vmatrix} \overrightarrow{A} \cdot \overrightarrow{C} & \overrightarrow{A} \cdot \overrightarrow{D} \\ \overrightarrow{B} \cdot \overrightarrow{C} & \overrightarrow{B} \cdot \overrightarrow{D} \end{vmatrix}$ $III. \quad (\overrightarrow{A} \times \overrightarrow{B}) \cdot (\overrightarrow{B} \times \overrightarrow{C}) \times (\overrightarrow{C} \times \overrightarrow{A}) = [\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C})]^{2}$ $IV. \quad (\overrightarrow{A} \times \overrightarrow{B}) \cdot (\overrightarrow{C} \times \overrightarrow{D}) = [\overrightarrow{A} \cdot (\overrightarrow{C} \times \overrightarrow{D})]B - [\overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{D})A]$

Problem 2

An anisotropic elastic solid is subjected to some load that gives a strain state ε_{ij} in the $x_1x_2x_3$ coordinate system. In a different (rotated) coordinate system $x_1x_2x_3$ ['] the strain state is transformed to $\varepsilon_{m'n'}$.

- (a) Do you expect the strain energy density function U₀ to be a function of strain invariants only?
- (b) Do you expect the same or different expressions of U₀ when it is expressed in terms of ε_{ij} or ε_{m'n'}?
- (c) Do you expect the same or different numerical values of U_0 when you compute it from its expression in terms of ε_{ij} and from its expression in terms of $\varepsilon_{m'n'}$?
- (d) Justify your answers.

Answer parts (a), (b) and (c) if the material is isotropic.

Problem 3

Show the reduction of orthotropic material stress-strain Equation to those of a transversely isotropic material stress-strain Equation.

Problem 4

- (a) A thin triangular plate is fixed along the boundary OA and is subjected to a uniformly distributed horizontal load p_0 per unit area along the boundary AB as shown in the figure. Give all boundary conditions in terms of displacement or stress components in x_1x_2 coordinate system.
- (b) If p_0 acts normal to the boundary AB what will be the stress boundary conditions along line AB?

